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Abstract. A statistical study of the zonal drift velocities of
the ionospheric plasma bubbles using experimental airglow
data acquired at the low-latitude station Cachoeira Paulista
(Geogr. 22.5◦ S, 45◦ W, dip angle 28◦ S) during the period of
October to March, between 1980 and 1994, is presented here.
This study is based on 109 nights of zonal plasma bubble ve-
locity estimations as determined from bubbles signatures on
the OI 630 nm scanning photometer airglow data. The zonal
velocity magnitudes of the plasma bubbles are investigated
with respect to solar activity and local time. It is verified that
these velocities tend to increase with the solar EUV flux, us-
ing the solar 10.7-cm radio flux as a proxy (F10.7). These ve-
locities are seen to be larger during the solar maximum activ-
ity period than in the solar minimum period. As to the local
time variation, they are seen to peak before midnight, in the
20:30–22:30 LT time frame, depending on the season. The
all-data plot based on the 109 nights of airglow experiments
shows that the plasma bubble mean zonal drift velocities tend
to decrease with local time, but they peak at 22:25 LT, where
the velocity magnitude reaches 127.4 ms−1. The zonal drift
variations with local time and solar flux are shown in Figs. 1
and 2, respectively.

Key words. Ionosphere (ionospheric irregularities; instru-
ments and techniques) – Atmospheric composition and struc-
ture (airglow and aurora)

1 Introduction

The low-latitude ionosphere bears the remarkable phenom-
ena of plasma depletions, or bubbles, which consist of ex-
tended regions of depleted F-region plasma. The morphol-
ogy and dynamics of this phenomenon have been investi-
gated over the past several decades (Hanson and Sanatani,
1973; Weber et al., 1978; Woodman and La Hoz, 1976; Mc-
Clure et al., 1977; Anderson and Haerendel, 1979; Tsun-
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oda, 1981; Mendillo and Baumgardner, 1982; Tsunoda et al.,
1982; Carman, 1983; Rohrbaugh et al., 1989 and many other
authors).

The plasma bubbles are generated in the nocturnal F-
region from initial ionization perturbations and plasma up-
ward drifts (Kelley, 1989). The first set of observations
of plasma bubbles over Brazil (Cachoeira Paulista – Geogr.
22.5◦ S, 45◦ W, dip angle 28◦ S) were reported by Sobral et
al. (1980a, b) and Sahai et al. (1981) through the use of air-
glow 630 nm scanning photometers. The developed plasma
bubbles move eastward over the South American sector with
velocities of∼100 ms−1 (Sobral and Abdu, 1990, 1991; So-
bral et al., 1985; Abdu et al., 1985; Pimenta et al., 2003).
The zonal drifts of the plasma bubbles result from the ver-
tical polarization electric fields that are generated through
complex interactions among the tidal winds, the geomagnetic
field and the ionospheric plasma in the F-region. Studies of
the plasma bubble zonal drift velocities’ behavior have been
carried out using several techniques, such as the OI 630 nm
monitoring in low-latitude and equatorial localities using all-
sky imager and photometer systems (Sobral et al., 1985; So-
bral and Abdu, 1990, 1991; Fejer et al., 1985; Basu et al.,
1996; Valladares et al., 1996; Taylor et al., 1997; de Paula et
al., 2002; Martinis et al., 2003; Pimenta et al., 2003).

Solar heating is responsible for the atmospheric tides,
which are primary energy sources for the diurnal and noctur-
nal plasma motions in the ionospheric domain. The purpose
of this work is to carry out a statistical study of the plasma
bubbles’ zonal drift velocities during a solar cycle over Ca-
choeira Paulista. These velocities were inferred from scan-
ning photometer OI 630 nm data acquired between 1980 and
1994, allowing, therefore, for a comparison of the veloci-
ties during the maximum and minimum solar activity peri-
ods. The method used here to infer the zonal drifts veloci-
ties is based on the photometric data described by Sobral et
al. (1991). The large photometric database provides informa-
tion highly relevant to this work, since it allows for a com-
parison of the velocities during the maximum and minimum
solar activity periods.
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Table 1. Nights with the smallest6Kp during the period of October to March, between 1980–1994, of maximum and minimum solar
activity.

SOLAR MAXIMUM
(1980–1982/1988–1992)

January 6Kp February 6Kp March 6Kp October 6Kp November 6Kp December 6Kp

27–28/1/1990 7◦ 13–14/2/1980 4+ 12–13/3/1980 2+ 1–2/10/1980 5− 14–15/11/1990 2+ 6–7/12/1980 7−

23–24/1/1980 10− 10–11/2/1980 7◦ 22–23/3/1988 6◦ 24–25/10/1992 5+ 25–26/11/1989 3+ 5–6/12/1988 7+

13–14/1/1988 13+ 11–12/2/1980 8+ 9–10/3/1981 8− 31–1/11/1981 9+ 13–14/11/1990 6◦ 18–19/12/1990 10−

28–29/1/1990 13+ 17–18/2/1980 12◦ 20–21/3/1980 9+ 2–3/10/1980 10− 15–16/11/1990 6◦ 8–9/12/1988 10◦

17–18/1/1988 14◦ 16–17/2/1982 13+ 13–14/3/1988 10− 15–16/10/1988 11+ 29–30/11/1992 11− 7–8/12/1980 12+

5–6/1/1981 18◦ 9–10/2/1980 20+ 23–24/3/1988 10+ 25–26/10/1992 14◦ 3–4/11/1980 11◦ 17–18/12/1990 12+

17–18/1/1982 18◦ 3–4/2/1981 22◦ 16–17/3/1991 13− 13–14/10/1991 15◦ 8–9/11/1980 13− 20–21/12/1981 13+

18–19/1/1988 18◦ 14–15/2/1980 24◦ 18–19/3/1991 14− 23–24/10/1990 16◦ 6–7/11/1980 13◦ 22–23/12/1992 16−

19–20/1/1988 19− 21–22/2/1990 25− 10–11/3/1981 15+ 2–3/10/1989 17− 20–21/11/1990 13+ 4–5/12/1980 16−

1–2/1/1992 21− 15–16/2/1980 27+ 19–20/3/1980 16◦ 3–4/10/1989 19− 26–27/11/1989 17+ 19–20/12/1981 18−

SOLAR MINIMUM
(1983–1987/1993–1994)

January 6Kp February 6Kp March 6Kp October 6Kp November 6Kp December 6Kp

4–5/1/1987 5+ 16–17/2/1985 13+ 22–23/3/1985 8◦ 30–31/10/1984 12+ 17–18/11/1987 12+ 14–15/12/1993 8−

5–6/1/1987 5+ 6–7/2/1986 16◦ 30–31/3/1987 8+ 31–1/11/1986 13+ 18–19/11/1987 11− 15–16/12/1987 15◦

13–14/1/1986 6+ 28–1/3/1987 21+ 24–25/3/1987 9◦ 28–29/10/1986 14+ 28–29/11/1984 11+ 11–12/12/1993 14+

7–8/1/1983 8◦ 23–24/2/1987 23◦ 20–21/3/1985 10− 14–15/10/1985 16◦ 2–3/11/1986 12◦

7–8/1/1987 9◦ 22–23/2/1987 25− 25–26/3/1987 11− 27–28/10/1984 16+ 19–20/11/1987 21−

4–5/1/1986 10◦ 21–22/2/1987 26− 23–24/3/1987 12◦ 28–29/10/1984 17◦ 20–21/11/1987 19+

8–9/1/1983 17− 11–12/2/1983 26− 8–9/3/1983 13− 26–27/10/1987 19◦ 1–2/11/1986 18◦

3–4/1/1986 17◦ 16–17/2/1994 29+ 10–11/3/1983 13◦ 30–31/10/1986 23◦

26–27/1/1993 28◦ 15–16/2/1983 30+ 9–10/3/1983 15− 29–30/10/1986 23◦

16–17/2/1983 33− 28–29/3/1987 18− 15–16/10/1985 23+

2 Results

The zonal plasma bubbles’ velocities concerned here are
equal to those of the airglow intensity minima, as obtained by
an OI 630 nm scanning (±75◦ around zenith in the east-west
direction) photometer system. Those airglow intensity min-
ima result from the decreased plasma concentration within
the bubble. This method was described in detail by Sobral
et al. (1991). This study is based on 109 nights of zonal
scanning photometer measurements of the OI 630 nm night
airglow. The mean sunspot number was used here to arrange
the data in two groups: the maximum solar activity period
group with mean sunspot number>94.3 (years from 1980 to
1982 and from 1988 to 1992) and the minimum solar activ-
ity group with mean sunspot number<67 (years from 1983

to 1987 and from 1993 to 1994). The geomagnetic activ-
ity and seasonal parameters were chosen so as to minimize
their effects on the results. So, the following groupings were
adopted: ten nights with the lowest6Kp (obtained from:
http://spidr.ngdc.noaa.gov/spidr) values found in the data set
for each month of the minimum and maximum solar activ-
ity period (Table 1). Those 24-h6Kp values refer to the
first day of the nocturnal period of observation. The 109 se-
lected nights of the experiments concerned with this work are
shown in Table 1.

The set of data shown in Table 1 (109 nights of experi-
ments) was arranged in four groups, namely a) data obtained
in the months of January, February and March, during so-
lar maximum activity; b) data obtained in January, February
and March during solar minimum activity; c) data obtained

http://spidr.ngdc.noaa.gov/spidr
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Table 2. Accelerations and velocities at 20:00 LT and 04:00 LT obtained from Fig. 1.

PERIOD ACCELERATION (ms −1h−1) Vi (ms−1) Vf (ms−1)

Jan./Feb./Mar./Maximum (Group a) −8.5 145.6 77.9

Jan./Feb./Mar./Minimum (Group b) −9.5 123.4 47.4

Oct./Nov./Dec./Maximum (Group c) −11.0 149.9 61.6

Oct./Nov./Dec./Minimum (Group d) −14.2 144.4 31.2

in October, November and December during solar maximum
activity and d) data obtained in October, November and De-
cember during solar minimum activity. The number of nights
of observation of those groups were 59, 38, 54 and 21, re-
spectively. These data were studied with respect to the Solar
Flux parameter F10.7 cm, as obtained from:ftp://ftp.ngdc.
noaa.gov/STP/SOLARDATA/SOLAR RADIO/FLUX/. Fi-
nally, all of the plasma bubbles’ zonal drift velocities ob-
tained during the 109 nights of observations were plotted as
a function of local time and the F10.7 index.

3 Discussion

Figure 1 shows the mean zonal velocities versus local time
obtained each group of experiments described in Sect. 2. The
fitted straight lines of Fig. 1 show clearly that the mean zonal
drift velocities tend to decrease with local time in all groups.
This result can be understood through the electric field polar-
ization of the F-region that drives the nocturnal zonal drift of
the plasma in that region. The intensity of this electric field
is very intense after sunset and decreases with time because
of the reduced neutral wind velocity.

In addition, the fitted polynomial lines of Fig. 1
show the tendency of the mean zonal drift velocities to
peak before midnight, which is consistent with Fejer et
al.’s (1991) observations. The maximum and minimum ve-
locity magnitudes were: a) Vmax=127.8 ms−1 at 22:25 LT;
b) Vmax=109.2 ms−1 at 21:34 LT and Vmin=55.7 ms−1

at 03:10 LT; c) Vmax=135.9 ms−1 at 20:57 LT and d)
Vmax=121.6 ms−1 at 20:24 LT.

The initial and final velocities, as taken from the linear
fittings of Fig. 1 at 20:00 LT and 04:00 LT, here represented
as Vi and Vf , respectively, were used as reference velocities
to estimate the zonal acceleration of the bubbles. Table 2
shows the results for Vi and Vf , and that the zonal velocities
were larger toward the solar maximum activity period. This
result is consistent with that of Biondi et al. (1991) and can be
interpreted by means of Eq. (1) from Martinis et al. (2003):

Vϕ = UP
ϕ −

∑
H∑
P

VL −
JL∑

P

, (1)

whereVϕ is the zonal drift velocity,UP
ϕ is the Pedersen-

weighted neutral zonal wind,VL is the vertical drift velocity,
JL is the integrated vertical current density, and6H and6P

 

 11

0

40

80

120

160

200

240

280

320

Ve
lo

ci
ty

 (m
s-1

)

January, February and March
Solar Maximum (1980-1982/1988-1992)

Number of nights: 59

January, February and March
Solar Minimum (1983-1987/1993-1994)

Number of nigths: 38

(a) (b)

Local Time

0

40

80

120

160

200

240

280

320

Ve
lo

ci
ty

 (m
s-1

)

Local Time

(c) (d)

October, November and December
Solar Maximum (1980-1982/1988-1992)

Number of nights: 54

October, November and December
Solar Minimum (1983-1987/1993-1994)

Number of nights: 21

18 20 22 24 02 04 18 20 22 24 02 04 06

V20LT = 145.6 ms-1

V04LT = 77.9 ms-1

V20LT = 123.4 ms-1

V04LT =  47.4 ms-1

V20LT = 149.9 ms-1

V04LT =  61.6 ms-1

V20LT = 144.4 ms-1

V04LT = 31.2 ms-1

 
Figure 1. Zonal velocities of the plasma bubbles versus Local Time for (a) 

January/February/ March solar maximum, (b) January/ February/ March 
solar minimum (c) October/ November/ December solar maximum and (d) 
October/November/ December solar minimum. 

 
 

Fig. 1. Zonal velocities of the plasma bubbles versus Lo-
cal Time for (a) January/February/March solar maximum,
(b) January/February/March solar minimum,(c) Octo-
ber/November/December solar maximum and(d) Octo-
ber/November/December solar minimum.

are the total field-line integrated Hall and Pedersen conduc-
tivities, respectively. Assuming that the last term of Eq. (1)
is small for most local times, except near the solar termina-
tor below the F-region ledge (Eccles, 1998), it is assumed to
be null and consequently, the zonal plasma drift velocity will
depend essentially on the intensity of the zonal wind velocity
UP

ϕ (Haerendel et al., 1992; Eccles, 1998). So, since dur-
ing the solar maximum activity the pressure gradients pro-
duced by the solar heating are greater and the wind becomes
more intense, the zonal plasma drift velocities are expected
to be larger in this period as observed in Table 2, where one
can also seen that shows that the deceleration is consistently
higher in spring (October to December) than in summer (Jan-
uary to March) and that the velocities tend to decrease faster
with local time during solar minimum than during solar max-
imum. Since the bubbles’ (or plasma) zonal velocities essen-
tially result from the action over the flux tube of the neutral
wind system perpendicular to the flux tube, such a faster de-
crease during spring possibly arises from an equivalent drop
in the intensity of the wind system with local time.

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/ SOLAR_RADIO/FLUX/
ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/ SOLAR_RADIO/FLUX/
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Table 3. Velocities’ variations with Solar Flux in Jy (where 1 Jy=1 Jansky=10−26W m−2 Hz−1=10−4 Solar Flux Units F10.7 cm obtained
from Fig. 2.)

PERIOD VARIATION (ms −1(104Jy)−1) Vi (ms−1) Vf (ms−1)

Jan./Feb./Mar./Maximum (Group a) 0.05 103.8 110.8

Jan./Feb./Mar./Minimum (Group b) 0.09 85.2 99.1

Oct./Nov./Dec./Maximum (Group c) −0.05 111.6 103.5

Oct./Nov./Dec./Minimum (Group d) 0.52 92.9 171.6
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Figure 2. Same as Figure 1 except for the Solar Flux F10.7 cm parameter horizontal 

axis. The plasma bubbles zonal drift velocities were obtained in the interval 
between 18LT and 22:45LT. 
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Figure 3. Plasma bubble zonal drift velocities (109 nights of experiments) versus the 
Local Time.  

 

Fig. 2. Same as Fig. 1 except for the Solar Flux F10.7 cm parameter
horizontal axis. The plasma bubbles’ zonal drift velocities were
obtained in the interval between 18:00 LT and 22:45 LT.

It is important to observe that in this analysis it was
assumed that both the plasma bubble and the background
plasma drift with the same zonal velocity. This is possible
since in the fully developed bubbles there is no upward mo-
tion (or reduced motion), and its structure becomes strongly
coupled to the zonal drifts (Martinis et al., 2003). Figure 2
shows plasma bubbles’ zonal mean drift velocities of groups
(a) to (d) as a function of F10.7 in the interval between
18:00 LT and 22:45 LT. From Fig. 2 it was observed that,
except for panel (c), the mean zonal drift velocities tend to
increase with F10.7. This increase is possibly associated
with higher pressure/temperature gradients next to the Ter-
minator, resulting in more intense zonal winds during higher
F10.7 fluxes. The negative slope of panel (c) corresponds to
a velocity drop from 111.6 ms−1 at F10.7=100 to 103.5 ms−1

at F10.7=250, that is, a net drop of only 8.1 ms−1, which is
considerably smaller than the magnitude of the error bars,
which range from 20 to 100 ms−1. Therefore, this negative
slope has hardly any physical meaning.

Table 3 shows the initial and final mean velocities, Vi at
F10.7=100 and Vf at F10.7=250, as taken from the least-
square fitted lines of Fig. 1. The velocity variations with
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axis. The plasma bubbles zonal drift velocities were obtained in the interval 
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 Fig. 3. Plasma bubble zonal drift velocities (109 nights of experi-
ments) versus the Local Time.
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Fig. 4. Plasma bubble zonal drift velocities (109 nights of experi-
ments) versus the Solar Flux F10.7, in the interval between 18:00 LT
and 22:45 LT.

F10.7 shown were obtained from Vi and Vf , and the differ-
ence between their respective F10.7. The zonal drift velocity
increase with F10.7 is clearly larger for group (d), smaller for
groups (a) and (b) and slightly negative for group (c).

Figures 3 and 4 show all-data plots of the plasma bub-
bles’ zonal drift velocities obtained during the 109 nights of
observations, as a function of local time and the F10.7, re-
spectively. Figure 3 shows that, generally, the mean zonal
drift velocities tend to decrease with local time, in agree-
ment with the expected trend. The initial and final mean
velocities at 20:00 LT and 04:00 LT on the least-square fit-
ted lines were Vi=145.6 ms−1 and Vf =78.0 ms−1, respec-
tively. The acceleration obtained through Vi and Vf and
the time interval between Vi and Vf was −8.5 ms−1 h−1.
The maximum velocity value found from the fitted poly-
nomial line was 127.4 ms−1 at 22:25 LT. The results pre-
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sented in Fig. 4 demonstrate that the plasma bubbles’ zonal
drift velocities are proportional to F10.7 between 18:00 LT
and 22:45 LT. From the linear-square fitting shown in
Fig. 4 the mean zonal drift velocities varies from 95.3 ms−1

at F10.7=100 (x10−22 Wm2 Hz−1) to 116.6 ms−1 at 250
(x10−22 Wm2 Hz−1).

4 Conclusions

This work concerns the results of a statistical study of the
zonal drift velocities of the plasma bubbles using scanning
(±75◦ around zenith in the East-West direction) photometer
airglow data acquired at the low-latitude station Cachoeira
Paulista (22.5◦ S, 45◦ W, dip 28◦ S), based on 109 nights
of experiments during the period of October to March, be-
tween 1980 and 1994. It was observed that, generally, the
mean zonal drift velocities of the plasma bubbles tend to de-
crease with local time. This tendency was expected, since
the decrease of these velocities with local time, resulting
from decreasing neutral wind intensities, is well established.
The velocities were observed to peak before midnight, that
is, between 22:25 and 21:34 LT during summer (January to
March) and between 20:24 and 20:57 LT during spring (Oc-
tober to December). Not only such results are consistent with
those of Fejer et al. (1991) for Jicamarca but also the result
found here that the deceleration is higher during spring (Oc-
tober to December) than during summer (January to March).
The results obtained in this work regarding the variation of
the mean zonal velocities with the solar activity showed that
these velocities are larger during the solar maximum activ-
ity period and tend to increase with F10.7 during the pre-
midnight period. Also, it can be observed that these veloci-
ties tend to decrease faster with local time during solar mini-
mum than during solar maximum.
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